APl dan RESTful API

Tujuan Pembelajaran

+ Memahami konsep dasar APl dan manfaatnya

« Menjelaskan arsitektur RESTful API

« Mengimplementasikan API endpoints menggunakan Laravel
+ Melakukan testing dan debugging API

« Menerapkan best practices dalam pengembangan API
API

API (Application Programming Interface) merupakan sekumpulan aturan dan protokol yang memungkinkan
aplikasi berbeda platform untuk berkomunikasi dan saling terintegrasi.

Mengapa API Penting?

API (Application Programming Interface) adalah media untuk komunikasi antara aplikasi yang berbeda.
Dalam era digital saat ini, hampir semua aplikasi modern menggunakan API untuk:

- Integrasi dengan layanan pihak ketiga
« Memisahkan frontend dan backend
« Mendukung multiple platform (web, mobile, desktop)
- Memungkinkan microservices architecture
Konsep Dasar API

Agar lebih memahami konsep dasar API berikut analogi APl pemesanan makanan pada restoran.

™) g y
CLIENT API SERVER

nagan) 3 (Dapur - Backend)

ﬂ ' 4. Deliver H ‘ Response
\ = J \ J
[\k\m;.-.mys Pasanan
Alur Kerja API:

ENT [Anda) mangirim permindaanirequest ke AP!
5 <

menarima dan manwalidasi request, lalu meneruskan ke Setver

3. SERVER [Dapur) memproses permintaan dan mengrim response kambali ke AP

4. AP| (Pelayan) menerima response dan mengrmkan hasd akhr kepada Client

Komponen Utama API (Request dan Response)

1. Request (Permintaan)
* URL/Endpoint
* HTTP Method
» Headers
» Body/Payload
2. Response (Respons)
+ Status Code
» Headers
* Body/Data

Berikut ini merupakan ilustrasi komponen utama API

| URL/Endpoint:

\ https://spl.exsmple. con/users /121
m POST PUT, cFyFLf; -

‘ HTTP Method:

Headers:
Content-Type: sopllcatinuison

Autherizatinn: Seerer tovenils

‘ Body/Payload:
(“seme®: “Jown*, Temail®: “Jjutnfesll cow*)

\ »

RESPONSE (Respons)

Status Code

m 0K - Success
U | Queat, 404 Mot Found, 500 Suwver Ener

Headers:

Kofate-Lisit: 1408

Body/Dsta.
5 A3,
“mam="i “30Mn Do2*,
B2 7L W T 4 U —
. 7

Jenis-Jenis API

« Web API : Menggunakan protokol HTTP/HTTPS

« REST API: Mengikuti arsitektur REST

- GraphQL API: Query language untuk API

« SOAP API: Protocol berbasis XML

« Library API: Interface untuk library atau framework

« Operating System API: Interface dengan sistem operasi
- Database API: Interface untuk mengakses database

Komponen AP

® Request Permntaan dan clierd

® Response Balasan dar sarvet

HTTF Methods:

+ GET Mengamai! data

* POST Meagram dasa taru
* PUT. Update tatn
~DELFTE Mapus swla

$tatus Codes

RESTful API

REST (Representational State Transfer) adalah arsitektur untuk merancang web services. REST bukan
protokol atau standar, melainkan seperangkat prinsip desain.

Prinsip REST (Representational State Transfer)

1. Client-Server Architecture

Client dan server terpisah dan dapat berkembang secara independen.
2. Stateless

Setiap request harus berisi semua informasi yang diperlukan server untuk memproses request tersebut.
3. Cacheable

Response harus dapat di-cache untuk meningkatkan performa.
4. Uniform Interface

Interface yang konsisten antara client dan server.
5. Layered System

Arsitektur berlapis yang memungkinkan scalability.
6. Code on Demand (Opsional)

Server dapat mengirim kode executable ke client

Struktur URL REST

GET /apilusers # Mendapatkan semua users

GET /apilusers/1 # Mendapatkan user dengan ID 1 POST /api/users
Membuat user baru

PUT /api/users/1 # Update user dengan ID 1 DELETE /api/users/1

Hapus user dengan ID 1

HTTP Methods dalam REST
GET - Mengambil Data

GET /api/users GET
fapilusers/1

Keterangan :

Digunakan untuk retrieve data
Idempotent (hasil sama meski dipanggil berulang)
Tidak mengubah state server

POST - Membuat Data Baru

POST /api/users
Content-Type: application/json

{

"name": "John Doe",
"email”: "john@example.com” }

Keterangan :
Digunakan untuk membuat resource baru
Tidak idempotent

PUT - Update Seluruh Resource

PUT /api/users/1 Content-Type:
application/json

{

"name": "John Smith",
"email": "johnsmith@example.com" }

Keterangan :
Update seluruh resource
+ Idempotent

PATCH - Update Sebagian Resource

PATCH /api/users/1 Content-Type:
application/json

{

"name": "John Smith"

}

Keterangan :
Update sebagian field
Idempotent

DELETE - Menghapus Resource
DELETE /api/users/1

Keterangan :
« Menghapus resource
Idempotent

HTTP Status Codes
2Xx Success

200 OK: Request berhasil

201 Created: Resource berhasil dibuat

204 No Content: Request berhasil, tidak ada content
4xx Client Error

400 Bad Request: Request tidak valid

401 Unauthorized: Autentikasi diperlukan

403 Forbidden: Akses ditolak

404 Not Found: Resource tidak ditemukan

422 Unprocessable Entity: Validation error
o5xx Server Error

500 Internal Server Error: Error di server

502 Bad Gateway: Gateway error

503 Service Unavailable: Service tidak tersedia

Membuat API dengan Laravel

Setup Project

composer create-project laravel/laravel api-project

cd api-project)\
php artisan serve

Database dan Migration

Membuat migration
php artisan make:migration create_products_table

migration
Schema::create('products', function (Blueprint $table) { $table->id();
$table->string(‘name);
$table->text('description’);
S$table->decimal(‘price’, 10, 2);
$table->integer(‘stock’);
$table->timestamps();

H:

Jalankan migration php
artisan migrate

Model

php artisan make:model Product

| Il app/Models/Product.php
class Product extends Model
{
protected $fillable = [
'name’, ‘description’, ‘price’, 'stock’ ;

protected $casts = [
‘price’ =>'decimal:2'];

API Routes

I/ routes/api.php
Route::apiResource('products’, ProductController::class);

// manual:
Route::get(‘products’, [ProductController::class, 'index]); Route::post(‘products’, [ProductController::class,
'store]); Route::get(‘products/{product}’, [ProductController::class, 'show]);

Route::put(‘products/{product}’, [ProductController::class, 'update]); Route::delete('products/{product}’,
[ProductController::class, 'destroy);

API Controller

php artisan make:controller ProductController --api

class ProductController extends Controller {
public function index()
{
$products = Product::all();
return response()->json([
'status' => 'success’,
'data’ => $products

D;
¥
public function store(Request $request)
{
$validated = $request->validate([
'name’ => "required|string|max:255', 'description’ =>
'required|string’, ‘price’ => 'required|numeric|min:0’,
'stock’ => 'required|integer|min:0’ D;

$product = Product::create($validated);

return response()->json([
'status' => 'success’,
'message’ => 'Product created successfully’, ‘data’ => $product
], 201);
b

public function show(Product $product) {
return response()->json([
'status' => 'success’,
'data’ => $product
)
¥

public function update(Request $request, Product $product)
{
$validated = $request->validate([
'name’ => 'sometimes|string|max:255', ‘description’ =>
'sometimes|string’, ‘price’ => 'sometimes|numericimin:0’,
'stock’ => 'sometimes|integer|min:0' D;

$product->update($validated);

return response()->json([
'status' => 'success’,
'message’ => 'Product updated successfully’, 'data’ => $product
D;
¥

public function destroy(Product $product) {
$product->delete();

return response()->json([
'status' => 'success',
'message’ => 'Product deleted successfully' D;

API Resources (Data Transformation)

Fitur yang memungkinkan untuk mentransformasi model data atau collection menjadi format JSON yang
konsisten dan mudah dikustomisasi untuk API response. APl Resource berfungsi sebagai layer transformasi
antara model Eloquent dan JSON response yang dikirim ke client sehingga dapat digunakan untuk

Mengontrol format output JSON, Menyembunyikan field sensitive, Menambahkan field computed dan
Membuat response yang konsisten.

Membuat Resource

php artisan make:resource ProductResource

Il app/Http/Resources/ProductResource.php
class ProductResource extends JsonResource

public function toArray($request)
{

return [
'id" => $this->id,
'name' => $this->name,
'description’ => $this->description,
'price’ => $this->price,
'stock' => $this->stock,
‘created_at' => $this->created_at->format("Y-m-d H:i:s'), ‘updated_at' => $this-
>updated_at->format("Y-m-d H:i:s") 1;
b
b

Menggunakan Resource di Controller
Silahkan ubah method index dan show menggunakan API Resource

public function index()

{
$products = Product::all();

return ProductResource::collection($products); }

public function show(Product $product)

{

return new ProductResource($product); }

Validasi dan Error Handling
Form Request Validation
php artisan make:request StoreProductRequest

/I app/Http/Requests/StoreProductRequest.php class StoreProductRequest extends FormRequest {
public function authorize()

{
¥

public function rules()

{

return true;

return [
'name’ => 'required|stringjmax:255', ‘description’ => 'required|string’, 'price' =>
'required|numericimin:0', 'stock’ => 'required|integer|min:0' 1;

}

public function messages()
{
return [
'name.required’ => 'Nama produk wajib diisi', ‘price.min’ => 'Harga tidak boleh negatif’
I;
}

Implementasikan pada method store

Global Exception Handler

Tambahkan kode program berikut pada app/Exceptions/Handler.php untuk menanggani Exception.

public function render($request, Throwable $exception) {
if ($request->wantsJson()) {
if ($exception instanceof ValidationException) { return response()-
>json([
'status' => 'error’,
'message’ => 'Validation failed',
‘errors' => $exception->errors()
1, 422);
}

if ($exception instanceof ModelNotFoundException) { return
response()->json([
'status' => 'error’,
'message’ => 'Resource not found'
], 404);
}
}

return parent::render($request, $exception); }

Mengakses API Products dengan Postman

Untuk memastikan API yang telah dibuat berjalan dengan baik maka perlu dilakukan percobaan mengakses
APl tersebut, untuk testing menggunakan POSTMAN, silahkan download dan install POSTMAN
pada computer dan lakukan testing API yang telah dibuat, sebelum melakukan testing silahkan tonton video
tutorial cara penggunaan POSTMAN pada link berikut :

https://www.youtube.com/watch?v=7cJylpFubAc atau https://www.youtube.com/watch?v=VcYulsKIOfqg

1. GET - Mengambil Semua Products

Method: GET
URL.: http://localhost:8000/products

Headers:
Accept: application/json Content-
Type: application/json Response

Example (200 OK):

{
"data™: [
{
"id": 1,
"name": "Laptop Gaming",
"description™: "Laptop gaming dengan spek tinggi", "price":
""15000000.00",
"stock": 10,
"created_at": "2024-01-15T10:30:00.000000Z",
"updated_at": "2024-01-15T10:30:00.000000Z"
b
{
"id": 2,
"name": "Mouse Wireless",
"description™: "Mouse wireless ergonomis", "price":
"'250000.00",
"stock": 50,
"created_at": "2024-01-15T11:00:00.000000Z", "updated_at":

"2024-01-15T11:00:00.000000Z" }

]
}

2. POST - Membuat Product Baru

Method: POST
URL.: http://localhost:8000/products

Headers:
Accept: application/json Content-
Type: application/json Body
(JSON):

{

"name": "Smartphone Android",

https://www.youtube.com/watch?v=7cJy1pFubAc
https://www.youtube.com/watch?v=VcYuIsKlOfg

"description": "Smartphone dengan kamera 108MP dan RAM 8GB", "price™:
4500000.00,
"stock™: 25

}

Response Example (201 Created):

{
"message™: "Product created successfully",
"data": {
"id": 3,
"name": "Smartphone Android",
"description™: "Smartphone dengan kamera 108MP dan RAM 8GB", "price":
"'4500000.00",
"stock™: 25,
"created_at": "2024-01-15T12:00:00.000000Z",
"updated_at": "2024-01-15T12:00:00.000000Z"
}
}

Validation Error Example (422 Unprocessable Entity):
{

"message": "The given data was invalid.",
"errors": {
"name": ["The name field is required."], "price™: ["The price
field isrequired."] }

}

3. GET - Mengambil Product Berdasarkan ID

Method: GET
URL.: http://localhost:8000/products/{id}
Contoh: http://localhost:8000/products/1

Headers:
Accept: application/json Content-
Type: application/json Response

Example (200 OK):

{
"data": {
"id": 1,
"name": "Laptop Gaming",
"description™: "Laptop gaming dengan spek tinggi", "price":
""15000000.00",
"stock": 10,
"created_at": "2024-01-15T10:30:00.000000Z",
"updated_at": "2024-01-15T10:30:00.000000Z"
}
}

Not Found Example (404 Not Found):
{

"message™: "Product not found" }

4. PUT - Update Product

Method: PUT
URL.: http://localhost:8000/products/{id}
Contoh: http://localhost:8000/products/1

Headers:

Accept: application/json Content-
Type: application/json Body
(JSON):

{
"name": "Laptop Gaming Updated",

"description": "Laptop gaming dengan spek tinggi dan SSD 1TB",

"stock": 8
}

Response Example (200 OK):
{

"message": "Product updated successfully",
"data": {

"id": 1,

"name": "Laptop Gaming Updated",

"price": 16500000.00,

"description": "Laptop gaming dengan spek tinggi dan SSD 1TB",
"price": "16500000.00",

"stock™: 8,
"created_at": "2024-01-15T10:30:00.000000Z", "updated_at":
"2024-01-15T13:15:00.000000Z" }

}

5. DELETE - Hapus Product

Method: DELETE
URL.: http://localhost:8000/products/{id}
Contoh: http://localhost:8000/products/1

Headers:
Accept: application/json Content-
Type: application/json Response

Example (200 OK):
{

"message": "Product deleted successfully" }

Not Found Example (404 Not Found):
{

"message™: "Product not found" }

